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Precipitation extremes have implications for many facets of both
the human and natural systems, predominantly through flood-
ing events. Observations have demonstrated increasing trends in
extreme precipitation in North America, and models and theory
consistently suggest continued increases with future warming.
Here, we address the question of whether observed changes in
annual maximum 1- and 5-d precipitation can be attributed to
human influence on the climate. Although attribution has been
demonstrated for global and hemispheric scales, there are few
results for continental and subcontinental scales. We utilize three
large ensembles, including simulations from both a fully coupled
Earth system model and a regional climate model. We use two
different attribution approaches and find many qualitatively con-
sistent results across different methods, different models, and
different regional scales. We conclude that external forcing, dom-
inated by human influence, has contributed to the increase in
frequency and intensity of regional precipitation extremes in
North America. If human emissions continue to increase, North
America will see further increases in these extremes.
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R ecent years have seen numerous flooding and rainfall-related
extreme events in North America, totaling billions of dollars
in damages (1, 2). It is important to understand the drivers of
these high-impact events. Observations show that extreme pre-
cipitation has increased over North America (3). Additionally,
event attribution studies have identified an increased probabil-
ity of some individual extreme precipitation events in this region
due to anthropogenic influence (4, 5), including hurricane-
induced rainfall (6). However, a current gap in our understand-
ing is the role human influence has played in the intensification
of annual maximum precipitation (referred to as extreme precip-
itation herein) in North America, particularly at impact-relevant
scales. Here, we show robust detection and attribution results
for the intensification of extreme precipitation at continental and
subcontinental scales in North America.

We evaluate whether human influence has affected extreme
precipitation, using two methods. The first method compares the
time/space evolution to evaluate the presence of a signal and
the consistency of the observations with the modeled response
to external forcing. There is evidence of an anthropogenic influ-
ence on mean precipitation at global (7-9) and hemispheric (10)
scales. For extreme precipitation, an anthropogenic influence has
been detected and attributed for changes in the annual max-
ima over Northern Hemisphere land areas (11, 12). Extreme
precipitation time series often exhibit small signals and high
variability, especially at smaller scales, and this has hampered
consistent continental or smaller-scale regional attribution (13).
Using model simulations of historical and future climate change,
Martel et al. (14) demonstrated that, for many regions, a sig-
nificant trend in extreme precipitation cannot be distinguished
from natural variability until after the mid-21st century, but is
identifiable earlier than for total precipitation.

The second method is based on event attribution, which
determines how individual or combined external forcings have
changed the likelihood of extreme events. An increase in like-
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lihood due to anthropogenic influence has been identified for
some specific extreme events (e.g., refs. 4, 5, 15, and 16), but not
for others (e.g., refs. 17-19). In general, an attributable change
in the likelihood of extreme precipitation events defined over
larger spatial scales and longer time periods can be found earlier
(20). Fischer and Knutti (21) note that anthropogenic forcing has
increased the likelihood of heavy precipitation events on a global
scale at current warming levels, with further increases at higher
levels of warming. When presented together, the results based on
the two different attribution methods provide a more complete
picture of anthropogenic influence on past and future extremes.

To understand the causes of observed changes in extreme
precipitation, we utilize three large ensembles. Large initial con-
dition ensembles produce many realizations of a single model’s
response to a particular forcing, by making very small changes to
the initial conditions from which each simulation begins. These
ensembles can provide better estimates of an individual model’s
internal variability and response to external forcing (22, 23)
and facilitate the explicit consideration of stochastic uncertainty
in attribution results. Large sample sizes are needed for event
attribution in order to obtain reliable estimates of the probabil-
ities of rare events. Large ensembles have been used for many
event attribution studies (see a summary in ref. 24), including
atmosphere-only ensembles like weather@home (25) designed
for such assessments. Despite their benefits for detection and
attribution of the spatiotemporal evolution, fully coupled single-
model large ensembles remain underutilized. A comparison of
attribution results from multiple large ensembles as in refs. 26
and 27 can provide new insights or improve robustness of the
conclusions.

Here, we use a unique pair of large ensembles, where a 50-
member large ensemble of a fully coupled Earth system model
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(Canadian Earth System Model, version 2 [CanESM2]) (28) was
used to drive a regional large ensemble (Canadian Regional Cli-
mate Model, version 4 [CanRCM4]) in a coordinated modeling
approach (29). In addition, we also include the 40-member large
ensemble performed with the widely used Community Earth Sys-
tem Model (CESM1) (30). All three ensembles use historical
forcing through 2005, followed by Representative Concentration
Pathway 8.5 (RCP8.5) forcing through 2100 (hereafter, ALL). In
addition, CanESM?2 also contains 50 members with natural-only
forcing (NAT).

Many of the physical processes that produce extreme rainfall
occur at spatial scales smaller than those that can be reliably
simulated by available models. Local-scale events are not well
captured. Despite these caveats, model-simulated precipitation
is useful for assessing long-term trends and for studying physical
processes at subcontinental and larger scales.

Observed and Projected Changes

We focus on the annual maxima of 1-d (Rxlday) and 5-d
(Rx5day) rainfall. Rxlday is important for flash floods as well
as infrastructure design. Rx5day is relevant to large-scale river
flooding. Both metrics are commonly used to assess extreme
precipitation and are available from the HadEX2 observational
dataset (31). Before calculating regional averages, annual max-
ima were standardized locally by converting to a probability index
(PI) as in refs. 11 and 12 based on quantiles of a generalized
extreme value (GEV) distribution (see Materials and Methods).
Larger PIs correspond to larger precipitation amounts at a given
location. Spatial averages calculated from these standardized val-
ues are less sensitive to results from individual locations. The
region-average PI is an average of the probability of local annual
maxima.

Several spatial scales are considered (Fig. 14). We first ana-
lyze a continental average for areas with suitable observational
coverage (southern Canada and the United States). Next, North
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America is divided into three zonal bands with near-equal dis-
tribution of grid boxes. The domain also is divided into three
meridional bands. The intersection of these zonal and meridional
bands further divides the continent into nine smaller regions.
PI values from each model were remapped to the HadEX2 grid
before regional averages were calculated.

Time series of the PI for Rx1day averaged over North America
and selected regions are displayed in Fig. 1 for the observations
and each of three large ensembles. Additional regions are shown
in SI Appendix, Fig. S1. For the North America mean, all mod-
els and the observations show an increase in Rxlday over the
common period (1961-2010). The trend is largest in HadEX2
(5.47% over 50 y), while CanESM2 (4.25% over 50 y) and Can-
RCM4 (3.90% over 50 y) produce similar trends and CESM1
(1.88% over 50 y) is much smaller (SI Appendix, Table S1). The
Canadian models show larger trends than CESM in most regions.
In several (12 of 16) regions, especially central (east-west) and
its subregions, HadEX?2 shows trends much greater than those
found in the models. In the west and central west, HadEX2 shows
a decrease in extreme precipitation over this period, while all
three models show increases of varying magnitude. The inter-
annual variability in the observations can be large, but, in most
cases, HadEX2 is found within the spread of each of the ensem-
bles. Trends in Rx5day are often smaller than trends in Rx1day
(ST Appendix, Table S1), and this difference is most notable in
the observations. Future projections (using RCP8.5) show fur-
ther increases through the end of the century in Rxlday and
Rx5day in all regions and all models, with slightly smaller trends
in CESML1.

The three large ensembles broadly show consistent intramodel
spread of Rxlday and Rx5day trends (Fig. 1 and SI Appendix,
Table S1). For all models, trends in the domain-wide mean
exhibit the smallest variability between ensemble members.
Larger variability is seen for the smaller regions, especially the
drier regions where even small changes in precipitation may be
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Fig. 1. Defined North American regions used herein (A). Blue lines separate into three east-west bands and red lines separate into three north-south
bands with near-equal distribution of grid boxes. Combining gives nine regions across the domain. The gray shading shows the data mask from HadEX2 for
grid boxes with coverage for more than 75% of years, and white lines show the 2.5° x 3.75° grid. Values printed in each region indicate the number of
grid boxes. Time series of Rx1day Pl for North America (B), the three north-south (NS) regions (C, D, and H) and three east-west (EW) regions (E, F, and G).
Smaller regions can be found in S/ Appendix, Fig. S1. CanESM2 is shown in blue, CanRCM4 in red, and CESM1 in orange, with the observations from HadEX2
shown in black (5-y means in solid line and annual values in dotted line). A common grid and data mask are used for each dataset. For the models, the
spread indicates the 5th to 95th percentile range across the ensemble, and the bold line is 5-y means from the ensemble mean.
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reflected as large changes in the PI. The ratio of the ensemble
trend to the spread of trends across members is smaller for
CESM1 compared to the Canadian models, due to similar
ensemble variability but smaller trends. This ratio can be used
to determine the likelihood that an individual realization has a
positive trend (see SI Appendix, Table S1 for details). For the
48 Rxlday cases (across models and regions), 30 demonstrate
likely positive trends, with 13 of those showing very likely pos-
itive trends. This supports confidence in the intensification of
precipitation extremes.

Attribution of the Spatiotemporal Evolution

To analyze the spatiotemporal evolution (see Materials and
Methods), we produce a scaling factor describing the relationship
between the observations and model response to ALL forc-
ing. A scaling factor significantly larger than 0.0 implies that
an external forcing signal is detected in the observations. Note
that not meeting this condition is not necessarily an indication
of the absence of a signal, merely that a signal, if present, is not
distinguishable from the variability over this period. A scaling
factor that is also consistent with 1.0 indicates that the model
response is of similar magnitude to the observations and sup-
ports the attribution of the observed spatiotemporal evolution
to the combination of forcings. ALL forcing includes anthro-
pogenic factors such as human emissions of greenhouse gases,
atmospheric aerosols, stratospheric ozone, and land use changes
and natural external factors such as volcanic and solar forc-
ing. We utilize the many large ensemble realizations to provide
as robust as possible estimates of the scaling factors and their
uncertainties.

The scaling factors for a one-signal analysis with ALL, con-
ducted separately for each of the three models, are shown in
Fig. 2 for the 1961-2010 period. Results are shown for four cases:
a temporal regression of North American mean values and also
three spatiotemporal regressions (as in ref. 10). The latter con-
catenate information from the three east-west regions, the three
north—south regions, and the nine smaller regions. Spatiotem-
poral regressions also provide information on the consistency of
the spatial patterns between the model response and observa-
tions. For Rxlday, an ALL signal is detected for all regressions.
The scaling factors for CanRCM4 and CanESM2 are consis-
tent with 1.0 (and not 0.0), implying agreement between the
models’ response to ALL and the observations. Larger scal-
ing factors for CESM1 indicate that this model’s response is
underestimated compared to observations, which is consistent
with the previous trend analysis. All but one of the Rxlday
regressions pass a residual consistency test, which indicates the
regression residuals are generally consistent with internal climate
variability.

The three models agree on the detection of an ALL signal
in the observations for North American Rxlday, regardless of
the level of spatial information (Fig. 2). However, they disagree
on the magnitude of those changes. In order to understand the
differences between models, we performed a perfect-model attri-
bution test, where, one at a time, a realization was removed from
the ensemble to act as the observations (SI Appendix, Fig. S2).
For Rxlday, detection is found for 58 to 74% (CanRCM4), 64
to 92% (CanESM2), and 32.5 to 40% (CESML1) of realizations,
with the range indicating the spread across the four space—time
characterizations. These percentages are more than expected by
chance, implying the detection results from Fig. 2 are robust. A
lower perfect-model detection rate and wider CIs with CESM
are consistent with smaller ratios of the ensemble mean trend to
the spread of trends (SI Appendix, Table S1). There is a caveat
that the widely used method for estimating the scaling factor CIs
tends to underestimate their width (32). As such, the detection
results presented may actually be less robust, although we are
unable to test and fix this issue.
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Fig. 2. Scaling factors for North American precipitation extremes from a
one-signal (ALL forcing) optimal fingerprinting detection and attribution
for Rx1day (A) and Rx5day (B). Results from CanRCM4 are shown in red,
CanESM2 in blue, and CESM1 in orange. The first point is for a temporal
regression of North American mean values, and the next three are for space—
time regressions involving the concatenation of means of the designated
regions (Fig. 1A). Error bars represent a 90% range. Gray x indicates a failure
of the residual consistency test. Dashed lines are shown at 0, which indicates
detection, and 1, which implies consistency with the observations.

For Rx5day, a signal is detected in all (CESM1), two
(CanRCM4), and zero (CanESM2) of the North American
cases. For the Canadian models, the scaling factor CIs are wider
for Rx5day than for Rxlday, which contributes to the different
detection results. Rx1day and Rx5day can be governed by differ-
ent processes, although both annual maxima tend to occur during
the same time of year. Detecting a signal more robustly with
Rxlday compared to Rx5day is consistent with previous results
(11, 12) at larger scales.

The CanESM2 NAT simulations show a trend in Rxlday PI
of 0.44% per 50 y, which is much smaller than the ALL trend,
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although the variability is similar (SI Appendix, Table S1). A
two-signal detection and attribution analysis was conducted for
CanESM2 using both ALL and NAT simulations to isolate the
anthropogenic influence. An anthropogenic signal is detected
and consistent with 1.0 for Rxlday in the spatiotemporal cases
(81 Appendix, Fig. S3). The NAT signal inferred from CanESM2
is not detected in observations. This result may be partly due to
masking of the observed response to volcanic forcing by internal
variability, such as El Nino-Southern Oscillation (33, 34). While
internal variability is largely removed in the signal when averag-
ing across a large ensemble, its influence will still be present in
the observed series. Additionally, the use of 5-y means will damp
the effect of volcanic forcing in both observations and the model
response. Regardless, human influence can be separated in the
presence of natural external forcing. This provides a clear indi-
cation that human influence has intensified extreme precipitation
in North America.

Temporal regressions for individual regions yield more uncer-
tainty and weaker consistency with the observations (Fig. 3 for
Rxlday) than was seen for spatiotemporal regressions for all
of North America. There are, however, several exceptions. For
example, the east exhibits the strongest positive trends and shows
narrow Cls, detection in all three models, and attribution in
CanESM2 and CanRCM4. Similarly, the northeast and central
east also show narrow CIs and robust detection. An ALL sig-
nal is detected in six (CanRCM4), three (CanESM?2), and four
(CESM1) of the nine regions, demonstrating that detection for
precipitation extremes is feasible (at least in certain regions) at
smaller regional scales.

Using geopolitical regions, the ALL signal is detected for
Canada in Rxlday and Rx5day with all three models and for
the United States in Rx1day with CESM1 (SI Appendix, Fig. S4).
Attribution occurs for Rxlday and Rx5day in Canada with the
Canadian models and in Rxlday in the United States with
CESM1. The US region covers most of the domain, minus the
north; thus the results are slightly weaker than those for the
North American mean in Fig. 2. Identifying a change from
among the interannual variability may be easier in Canada,
because the percentage increase in precipitation is expected
to be larger in the higher latitudes due to enhanced warm-
ing and smaller variability because of generally smaller extreme
values.

Extreme Event Attribution

For event attribution (24), we define extreme events based on
the region mean PI. As the PIis computed locally at the grid box
level, events of extreme mean PI values represent elevated total
risk of local storms across the region, rather than precipitation
averaged over the region. This is relevant for adaptation planning
and emergency preparedness, as it is the compound occurrence
of local extremes that can result in extreme high regional PI and

increase the demands of regional response systems and adaptive
capacity.

We focus on CanESM2 for this analysis so that we can com-
pare ALL and NAT forcing. We determined the value of the 20-,
50-, and 100-y events for regional mean PI under historical NAT
forcing, and then calculated the return periods of these events
for current and future levels of global mean surface air temper-
ature (GSAT) increase (see Materials and Methods) under ALL.
The current climate has warmed about +1 °C compared with
the preindustrial period, based on observations (35). The results
are shown in Fig. 4 for Rxlday and in ST Appendix, Fig. S5 for
Rx5day.

Most regions exhibit large reductions in return periods of
extreme events with +1 °C of warming. The larger regions often
show less uncertainty around the return period estimates, con-
sistent with reductions in variability when averaging over larger
spatial scales. For precipitation extremes, the spatial scale can
have a large impact on event attribution results (20). The North
American mean shows dramatic reductions in return periods.
For example, a one in 20-y event in NAT becomes a one in 5-
y event with +1 °C warming (relative to a preindustrial climate),
while a one in 50-y (100-y) event becomes a one in 10-y (20-
y) event. The 20-, 50-, and 100-y events are expected to occur
about every 1.5 y to 2.5y, on average, with +3 °C of warm-
ing. A decrease in return period (increase in probability) with
ALL compared to NAT indicates that anthropogenic forcing will
increase the likelihood of extreme precipitation events.

The smaller regions with large changes in likelihood (north-
east, central east, southeast, and central west) showed strong
increasing trends (S Appendix, Table S1). Individual regions that
demonstrated robust consistency between the temporal evolu-
tion of the model response and observations (Fig. 3) all show
large reductions in extreme event return periods. However, even
regions where a change is not detected over the historical period
often exhibit increases in the likelihood of extreme region-level
events (with +1 °C). Similar results are found for Rx5day (S/
Appendix, Fig. S5), although the increases in likelihood are often
smaller than those for Rx1day.

Discussion and Conclusions

We demonstrated an intensification of precipitation extremes
over North America, with a contribution from human activity,
using consistent results from different models, different meth-
ods, and physical understanding. The intensification of extreme
precipitation and resulting increase in the likelihood of extreme
events are expected to continue with additional warming.
Positive trends are found for the observed mean PI at the
continental scale and for many regions. There is also a high like-
lihood of positive trends within the model ensembles. Positive
trends are consistent with the expectation that extreme precip-
itation will increase due to increasing atmospheric humidity,
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which increases proportionally to the temperature increase.
Larger trends in the Canadian models are likely explained
by stronger warming trends. Averaged over the North Ameri-
can domain, annual mean temperature anomalies in CanESM2
warm 1.77 °C over 1961-2010 based on a linear trend, while
CESM1 warms 1.08 °C. Our result is consistent with a study
involving tropospheric temperature (26), which found larger
warming in the CanESM2 than in the CESM1 large ensemble.
CanESM2 overestimates surface warming compared to obser-
vations (36).

A signal of combined anthropogenic and natural external forc-
ing can be detected in the intensification of extreme precipitation
at the continental scale over North America. In some cases,
this intensification can be attributed to human influence specif-
ically. All models agree that the ALL signal is detected; the
differences in scaling factors between model families (Can vs.
CESM1) are consistent with the trend differences. The detection
results are considered robust due to consistency across the model
ensembles, and are in agreement with the likelihood of positive
trends.

An increase in the probability of extreme regional PI values is
also attributed to human influence. Many regions already show
an increase in the probability of modeled 20-, 50-, and 100-
y region-level events, with greater increases at higher levels of
global warming. Even regions that do not exhibit a detectable sig-
nal in the current climate show robust increases in the likelihood
of extreme precipitation events with future warming. Strong
increases in the likelihood of extreme regional PI values, espe-
cially with larger GSAT increases, are consistent with increasing
trends and the detection of an ALL signal.

Performing the same detailed analyses with CanESM2 and
the much higher-resolution CanRCM4, and finding close agree-
ment, allows us to verify that the global climate model can
provide robust information on regional precipitation changes.
However, a required condition is that the model values are
standardized appropriately (e.g., through the use of the PI).
As we often do not have enough information to robustly esti-
mate past and future changes in extreme precipitation at local
scales (23), robust assessment of changes at larger spatial
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scales can be a useful alternative to guide local climate change
adaptation.

Materials and Methods

Data and Processing. We use three initial-condition large ensembles of
model simulations. CanESM2 (28) was used to produce a 50-member
ensemble at a resolution of 2.8°. Historical forcing from the fifth phase
of the Coupled Model Intercomparison Project was used for 1950-2005,
and RCP8.5 was used for 2006-2100. For a large ensemble with CanRCM4
(29), each of 50 realizations was driven by a different realization from the
CanESM2 ensemble. By design, consistent parameterizations were used for
both models (29). CanRCM4 used the 50-km rotated-pole grid of the North
American Coordinated Regional Climate Downscaling Experiment (37).
The data are available at https:/open.canada.ca/data/en/dataset/aa7b6823-
fd1e-49ff-a6fb-68076a4a477c (CanESM2) and https:/open.canada.ca/
data/en/dataset/83aa1b18-6616-405e-9bce-af7ef8c2031c  (CanRCM4). A
large ensemble of the Community Earth System Model version 1 (CESM1)
(30) has 40 realizations on a 1° grid with data from 1920-2100. As with
CanESM2, RCP8.5 is used starting in 2006. We use daily precipitation from
all models to calculate the chosen extremes indices with ref. 38.

HadEX2 (31) is a global gridded product derived from extremes indices
calculated from station data. HadEX2 is presented on a 2.5° by 3.75° grid,
with data coverage from 1901-2010. The extremes indices were calculated
at the station level before an interpolation algorithm was applied.

The annual maxima were standardized by calculating a Pl following refs.
11 and 12. For each grid box, annual maxima from 1979-2010 were fit to
a stationary GEV distribution; a bootstrap goodness-of-fit test confirms the
validity of this approach. Then, to determine the PI, each year was assigned
the quantile of this GEV distribution that corresponds to its maximum pre-
cipitation value. The resulting Pls show little sensitivity to the base period
used for fitting the distribution. For the NAT CanESM2 realizations, the Pl
was calculated using the GEV fit from the corresponding ALL realization.

In order to consider the impact of model resolution on the attribution
results, time series of the Pl were calculated for each grid box before the
model values were interpolated to the standard HadEX2 grid. Regional aver-
ages were calculated using grid box area weights. Anomalies of the regional
mean Pl were calculated by subtracting the expected mean of 0.5, as in
ref. 11.

Attribution of the Spatiotemporal Evolution. We utilize the Regularized Opti-
mal Fingerprinting (ROF) method of ref. 39 to regress observations onto
the model-simulated response. The use of the ROF method, in particular
with the CanESM2 large ensemble, is discussed in more detail in ref. 27. In
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general, the observations y are composed of the true climate response to all
forcings y* plus the influence of internal variability €. The model response
to each forcing x; can similarly be represented by the forced response x*
plus the combined influence of internal variability and finite ensembles ¢;.
A total least squares regression of the observations onto the model response
results in scaling factors 3,
m
y=y*+ea xi=x*+e  y*=> Bx,

i=1

that describe the relationship between the observations and the model-
simulated response to a specific forcing.

An estimate of climate variability was determined from the difference
between each model realization and the ensemble mean, which results in
the number of estimates being one less than the ensemble size. We dou-
bled the sample using ensemble mean differences from NAT simulations
for CanESM2 and separately standardized future periods for CanRCM4 and
CESM1. Separately for each model, half of each set of climate noise series
were combined to calculate a covariance matrix that was regularized for
prewhitening following ref. 39. The remaining series were used for a resid-
ual consistency test (40) and estimation of the Cls. Regional mean PI time
series for 1961-2010 were used, with nonoverlapping 5-y means. The use of
5-y means is a common compromise between capturing shorter-scale fea
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